UCLA researchers led by Drs. Peiyee Lee and Richard Gatti at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have used induced pluripotent stem cells (iPSC) to advance disease-in-a-dish modeling of a rare genetic disorder, Ataxia Telangiectasia (A-T). Their discovery shows the positive effects of drugs that may lead to effective new treatments for the neurodegenerative disease. iPSC are made from patient skin cells rather than from embryos and can become any type of cells, including brain cells, in the laboratory. The study appears online ahead of print today in the journal Nature Communications.

Patients with A-T begin life with neurological deficits that become devastating through progressive loss of function in a part of the brain called the cerebellum, which leads to severe difficulty with movement and coordination. A-T patients also suffer frequent infections due to their weakened immune systems and have increased cancer risk. A-T is caused by lost function in a gene, ATM, which normally repairs damaged DNA in the cells and preserves normal function.

“A-T patients with no ATM activity have severe disease but patients with some ATM activity do much better. This makes our discovery promising, because even a small increase in the ATM activity induced by the SMRT drug can potentially translate to positive effects for patients, slowing disease progression and hopefully improving their quality of life,” Lee said.

Media Contact: 

Mirabai Vogt-James
(310) 983-1163
mvogt@mednet.ucla.edu